Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Med Genet ; 69: 104932, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38453051

RESUMO

PURPOSE: Incomplete penetrance is observed for most monogenic diseases. However, for neurodevelopmental disorders, the interpretation of single and multi-nucleotide variants (SNV/MNVs) is usually based on the paradigm of complete penetrance. METHOD: From 2020 to 2022, we proposed a collaboration study with the French molecular diagnosis for intellectual disability network. The aim was to recruit families for whom the index case, diagnosed with a neurodevelopmental disorder, was carrying a pathogenic or likely pathogenic variant for an OMIM morbid gene and inherited from an asymptomatic parent. Grandparents were analyzed when available for segregation study. RESULTS: We identified 12 patients affected by a monogenic neurodevelopmental disorder caused by likely pathogenic or pathogenic variant (SNV/MNV) inherited from an asymptomatic parent. These genes were usually associated with de novo variants. The patients carried different variants (1 splice-site variant, 4 nonsense and 7 frameshift) in 11 genes: CAMTA1, MBD5, KMT2C, KMT2E, ZMIZ1, MN1, NDUFB11, CUL3, MED13, ARID2 and RERE. Grandparents have been tested in 6 families, and each time the variant was confirmed de novo in the healthy carrier parent. CONCLUSION: Incomplete penetrance for SNV and MNV in neurodevelopmental disorders might be more frequent than previously thought. This point is crucial to consider for interpretation of variants, family investigation, genetic counseling, and prenatal diagnosis. Molecular mechanisms underlying this incomplete penetrance still need to be identified.

2.
Prenat Diagn ; 44(3): 352-356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342957

RESUMO

A consanguineous couple was referred at 10 weeks of gestation (WG) for prenatal genetic investigations due to isolated cystic hygroma. Prenatal trio exome sequencing identified causative homozygous truncating variants in ASCC1 previously implicated in spinal muscular atrophy with congenital bone fractures. Prenatal manifestations in ASCC1 can usually include hydramnios, fetal hypo-/akinesia, arthrogryposis, contractures and limb deformities, hydrops fetalis and cystic hygroma. An additional truncating variant was identified in CSPP1 associated with Joubert syndrome. Presentations in CSPP1 include cerebellar and brainstem malformations with vermis hypoplasia and molar tooth sign, difficult to visualize in early gestation. A second pregnancy was marked by the recurrence of isolated increased nuchal translucency at 10 + 2 WG. Sanger prenatal diagnosis targeted on ASCC1 and CSPP1 variants showed the presence of the homozygous familial ASCC1 variant. In this case, prenatal exome sequencing analysis is subject to a partial ASCC1 phenotype and an undetectable CSPP1 phenotype at 10 weeks of gestation. As CSPP1 contribution is unclear or speculative to a potentially later in pregnancy or postnatal phenotype, it is mentioned as a variant of uncertain significance. The detection of pathogenic or likely pathogenic variants involved in severe disorders but without phenotype-genotype correlation because the pregnancy is in the early stages or due to prenatally undetectable phenotypes, will encourage the clinical community to define future practices in molecular prenatal reporting.


Assuntos
Linfangioma Cístico , Gravidez , Feminino , Humanos , Linfangioma Cístico/diagnóstico por imagem , Linfangioma Cístico/genética , Diagnóstico Duplo (Psiquiatria) , Diagnóstico Pré-Natal , Feto/diagnóstico por imagem , Fenótipo , Proteínas de Transporte/genética
3.
Am J Med Genet A ; 194(3): e63445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872713

RESUMO

The bromodomain adjacent to zinc finger 2B (BAZ2B) gene encodes a chromatin remodeling protein that has been shown to perform a variety of regulatory functions. It has been proposed that loss of BAZ2B function is associated with neurodevelopmental phenotypes, and some recurrent structural birth defects and dysmorphic features have been documented among individuals carrying heterozygous loss-of-function BAZ2B variants. However, additional evidence is needed to confirm that these phenotypes are attributable to BAZ2B deficiency. Here, we report 10 unrelated individuals with heterozygous deletions, stop-gain, frameshift, missense, splice junction, indel, and start-loss variants affecting BAZ2B. These included a paternal intragenic deletion and a maternal frameshift variant that were inherited from mildly affected or asymptomatic parents. The analysis of molecular and clinical data from this cohort, and that of individuals previously reported, suggests that BAZ2B haploinsufficiency causes an autosomal dominant neurodevelopmental syndrome that is incompletely penetrant. The phenotypes most commonly seen in association with loss of BAZ2B function include developmental delay, intellectual disability, autism spectrum disorder, speech delay-with some affected individuals being non-verbal-behavioral abnormalities, seizures, vision-related issues, congenital heart defects, poor fetal growth, and an indistinct pattern of dysmorphic features in which epicanthal folds and small ears are particularly common.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fatores Genéricos de Transcrição , Humanos , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Fenótipo , Dedos de Zinco , Transtornos do Neurodesenvolvimento/genética , Proteínas que Contêm Bromodomínio , Fatores Genéricos de Transcrição/genética
4.
Genet Med ; 26(4): 101059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158857

RESUMO

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Assuntos
Processamento Alternativo , Síndromes Orofaciodigitais , Masculino , Humanos , Processamento Alternativo/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA , Íntrons , Spliceossomos/genética , Ribonucleoproteínas/genética
5.
medRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398376

RESUMO

Purpose: De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. Methods: Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. Results: We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells. Conclusion: Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.

6.
Genet Med ; 25(7): 100857, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37092539

RESUMO

PURPOSE: Recessive deficiency of proopiomelanocortin (POMC) causes childhood-onset severe obesity. Cases can now benefit from the melanocortin 4 receptor agonist setmelanotide. Furthermore, a phase 3 clinical trial is evaluating setmelanotide in heterozygotes for POMC. We performed a large-scale genetic analysis to assess the effect of heterozygous, pathogenic POMC variants on obesity. METHODS: A genetic analysis was performed in a family including 2 cousins with childhood-onset obesity. We analyzed the obesity status of heterozygotes for pathogenic POMC variants in the Human Gene Mutation Database. The association between heterozygous pathogenic POMC variants and obesity risk was assessed using 190,000 exome samples from UK Biobank. RESULTS: The 2 cousins carried a compound heterozygous pathogenic variant in POMC. Six siblings were heterozygotes; only 1 of them had obesity. In Human Gene Mutation Database, we identified 60 heterozygotes for pathogenic POMC variants, of whom 14 had obesity. In UK Biobank, heterozygous pathogenic POMC variants were not associated with obesity risk, but they modestly increased body mass index levels. CONCLUSION: Heterozygous pathogenic POMC variants do not contribute to monogenic obesity, but they slightly increase body mass index. Setmelanotide use in patients with obesity, which would only be based on the presence of a heterozygous POMC variant, can be questioned.


Assuntos
Obesidade Infantil , Pró-Opiomelanocortina , Criança , Humanos , Índice de Massa Corporal , Heterozigoto , Mutação , Obesidade/genética , Obesidade Infantil/genética , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistas , Fármacos Antiobesidade/uso terapêutico
7.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724785

RESUMO

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Assuntos
Microcefalia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células HEK293 , Serina-Treonina Quinases TOR
8.
Eur J Hum Genet ; 31(7): 761-768, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36450799

RESUMO

About 0.3% of all variants are due to de novo mobile element insertions (MEIs). The massive development of next-generation sequencing has made it possible to identify MEIs on a large scale. We analyzed exome sequencing (ES) data from 3232 individuals (2410 probands) with developmental and/or neurological abnormalities, with MELT, a tool designed to identify MEIs. The results were filtered by frequency, impacted region and gene function. Following phenotype comparison, two candidates were identified in two unrelated probands. The first mobile element (ME) was found in a patient referred for poikilodermia. A homozygous insertion was identified in the FERMT1 gene involved in Kindler syndrome. RNA study confirmed its pathological impact on splicing. The second ME was a de novo Alu insertion in the GRIN2B gene involved in intellectual disability, and detected in a patient with a developmental disorder. The frequency of de novo exonic MEIs in our study is concordant with previous studies on ES data. This project, which aimed to identify pathological MEIs in the coding sequence of genes, confirms that including detection of MEs in the ES pipeline can increase the diagnostic rate. This work provides additional evidence that ES could be used alone as a diagnostic exam.


Assuntos
Deficiência Intelectual , Doenças Raras , Humanos , Sequenciamento do Exoma , Doenças Raras/genética , Éxons , Deficiência Intelectual/genética , Exoma , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética
9.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178483

RESUMO

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Assuntos
Hipogonadismo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Hipogonadismo/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas Repressoras , Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de GTPase/genética
10.
Eur J Med Genet ; 65(11): 104603, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049610

RESUMO

TRIT1 encodes a tRNA isopentenyl transferase that allows a strong interaction between the mini helix and the codon. Recent reports support the TRIT1 bi-allelic alterations as the cause of an autosomal recessive disorder, named combined oxydative phophorylation deficiency 35, with microcephaly, developmental disability, and epilepsy. The phenotype is due to decreased mitochondrial function, with deficit of i6A37 in cytosolic and mitochondrial tRNA. Only 10 patients have been reported. We report on two new patients with four novel variants, and confirm the published clinical TRIT1 deficient phenotype stressing the possibility of both very severe, with generalized pharmaco-resistant seizures, and mild phenotypes.


Assuntos
Alquil e Aril Transferases , Microcefalia , Humanos , Alquil e Aril Transferases/genética , Alelos , Códon , Microcefalia/genética , Mitocôndrias/genética , Fenótipo , RNA de Transferência
11.
Pharmacogenomics J ; 22(5-6): 258-263, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35590072

RESUMO

Beyond the identification of causal genetic variants in the diagnosis of Mendelian disorders, exome sequencing can detect numerous variants with potential relevance for clinical care. Clinical interventions can thus be conducted to improve future health outcomes for patients and their at-risk relatives, such as predicting late-onset genetic disorders accessible to prevention, treatment or identifying differential drug efficacy and safety. To evaluate the interest of such pharmacogenetic information, we designed an "in house" pipeline to determine the status of 122 PharmGKB (Pharmacogenomics Knowledgebase) variant-drug combinations in 31 genes. This pipeline was applied to a cohort of 90 epileptic patients who had previously an exome sequencing (ES) analysis, to determine the frequency of pharmacogenetic variants. We performed a retrospective analysis of drug plasma concentrations and treatment efficacy in patients bearing at least one relevant PharmGKB variant. For PharmGKB level 1A variants, CYP2C9 status for phenytoin prescription was the only relevant information. Nineteen patients were treated with phenytoin, among phenytoin-treated patients, none were poor metabolizers and four were intermediate metabolizers. While being treated with a standard protocol (10-23 mg/kg/30 min loading dose followed by 5 mg/kg/8 h maintenance dose), all identified intermediate metabolizers had toxic plasma concentrations (20 mg/L). In epileptic patients, pangenomic sequencing can provide information about common pharmacogenetic variants likely to be useful to guide therapeutic drug monitoring, and in the case of phenytoin, to prevent clinical toxicity caused by high plasma levels.


Assuntos
Epilepsia , Variantes Farmacogenômicos , Humanos , Fenitoína , Exoma/genética , Estudos Retrospectivos , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética
12.
Eur J Hum Genet ; 30(8): 967-975, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577939

RESUMO

Prenatal exome sequencing could be complex because of limited phenotypical data compared to postnatal/portmortem phenotype in fetuses affected by multiple congenital abnormalities (MCA). Here, we investigated limits of prenatal phenotype for ES interpretation thanks to a blindly reanalysis of postmortem ES data using prenatal data only in fetuses affected by MCA and harboring a (likely)pathogenic variant or a variant of unknown significance (VUS). Prenatal ES identified all causative variant previously reported by postmortem ES (22/24 (92%) and 2/24 (8%) using solo-ES and trio-ES respectively). Prenatal ES identified 5 VUS (in four fetuses). Two of them have been previously reported by postmortem ES. Prenatal ES were negative for four fetuses for which a VUS were diagnosed after autopsy. Our study suggests that prenatal phenotype is not a limitation for implementing pES in the prenatal assessment of unsolved MCA to personalize fetal medicine and could influence indication of postmortem examination.


Assuntos
Anormalidades Múltiplas , Anormalidades Congênitas , Anormalidades Múltiplas/genética , Autopsia , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Exoma/genética , Feminino , Feto/anormalidades , Humanos , Gravidez , Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal , Sequenciamento do Exoma
13.
Cell Rep ; 38(11): 110517, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294868

RESUMO

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Drosophila , Transtornos do Neurodesenvolvimento , Receptores de Glicina , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/genética , Drosophila/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de Glicina/genética
14.
Am J Med Genet A ; 188(5): 1600-1606, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060672

RESUMO

Loss-of-function variants in KMT2D are responsible for Kabuki syndrome type 1 (KS1). In the last 5 years, missense variants in exon 38 or 39 in KMT2D have been found in patients exhibiting a new phenotype with multiple malformations and absence of intellectual disability, distinct from KS1. To date, only 16 cases have been reported with classic features of hearing loss, abnormality of the ear, lacrimal duct defects, branchial sinus/neck pits, choanal atresia (CA), athelia, hypo(para)thyroidism, growth delay, and dental anomalies. We report here two families and one unpublished variant, refining the clinical and molecular knowledge on this new entity. Family 1 presented with apparently isolated autosomal dominant choanal atresia, in eight members across three generations. Exome sequencing (ES) in the proband and one cousin revealed a p.Glu3569Gly variant in exon 38 of KMT2D, segregating with choanal atresia in the family. Clinical reevaluation evidenced thyroid dysfunction, mild hearing anomalies, and hypoplastic nipple in some patients. Family 2 presented with nasolacrimal duct obstruction, hearing loss, mild facial features, unilateral axial polydactyly, and unilateral toe V-VI syndactyly. ES revealed a de novo already reported p.Arg3582Gln variant in exon 38 of KMT2D. Considering these results and the existing literature, we suspect that missense variants in exon 38 of KMT2D are responsible for phenotypes that are even milder (isolated CA) and broader (polydactyly) than what has been previously described.


Assuntos
Atresia das Cóanas , Perda Auditiva , Obstrução dos Ductos Lacrimais , Ducto Nasolacrimal , Polidactilia , Doenças Vestibulares , Anormalidades Múltiplas , Atresia das Cóanas/genética , Éxons , Face/anormalidades , Perda Auditiva/genética , Doenças Hematológicas , Humanos , Fenótipo , Polidactilia/genética , Doenças Vestibulares/genética
15.
Mol Genet Metab Rep ; 29: 100812, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712575

RESUMO

Considering that some Inherited Metabolic Disorders (IMDs) can be diagnosed in patients with no distinctive clinical features of IMDs, we aimed to evaluate the power of exome sequencing (ES) to diagnose IMDs within a cohort of 547 patients with unspecific developmental disorders (DD). IMDs were diagnosed in 12% of individuals with causative diagnosis (177/547). There are clear benefits of using ES in DD to diagnose IMD, particularly in cases where biochemical studies are unavailable. SYNOPSIS: Exome sequencing and diagnostic rate of Inherited Metabolic Disorders in individuals with developmental disorders.

16.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113008

RESUMO

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Assuntos
Epilepsia , Fatores de Troca do Nucleotídeo Guanina , Haploinsuficiência , Deficiência Intelectual , Epilepsia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Heterozigoto , Humanos , Deficiência Intelectual/genética
17.
Genet Med ; 23(3): 543-554, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33149277

RESUMO

PURPOSE: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION: Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Convulsões
18.
Clin Genet ; 99(3): 407-417, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277917

RESUMO

White-Sutton syndrome is a rare developmental disorder characterized by global developmental delay, intellectual disabilities (ID), and neurobehavioral abnormalities secondary to pathogenic pogo transposable element-derived protein with zinc finger domain (POGZ) variants. The purpose of our study was to describe the neurocognitive phenotype of an unbiased national cohort of patients with identified POGZ pathogenic variants. This study is based on a French collaboration through the AnDDI-Rares network, and includes 19 patients from 18 families with POGZ pathogenic variants. All clinical data and neuropsychological tests were collected from medical files. Among the 19 patients, 14 patients exhibited ID (six mild, five moderate and three severe). The five remaining patients had learning disabilities and shared a similar neurocognitive profile, including language difficulties, dysexecutive syndrome, attention disorders, slowness, and social difficulties. One patient evaluated for autism was found to have moderate autism spectrum disorder. This study reveals that the cognitive phenotype of patients with POGZ pathogenic variants can range from learning disabilities to severe ID. It highlights that pathogenic variations in the same genes can be reported in a large spectrum of neurocognitive profiles, and that children with learning disabilities could benefit from next generation sequencing techniques.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Variação Genética , Deficiência Intelectual/genética , Transtornos Neurocognitivos/genética , Transposases/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , França , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Testes Neuropsicológicos , Fenótipo , Adulto Jovem
19.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32553196

RESUMO

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Expressão Gênica/genética , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Alelos , Feminino , Variação Genética/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Fenótipo , Estabilidade Proteica
20.
Genet Med ; 22(7): 1215-1226, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376980

RESUMO

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Assuntos
Deficiência Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Transcriptoma/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA